Run A Vector Search with the Server Web Console
- how-to
Run a Vector Search query from the Couchbase Server Web Console to preview and test the search results from a Vector Search index.
For more information about how the Search Service scores documents in search results, see Scoring for Search Queries.
Prerequisites
-
You have the Search Service enabled on a node in your database. For more information about how to deploy a new node and Services on your database, see Manage Nodes and Clusters.
-
You have a bucket with scopes and collections in your database. For more information about how to create a bucket, see Create a Bucket.
-
Your user account has the Search Admin or Search Reader role.
-
You have created a Vector Search index.
For more information about how to create a Vector Search index, see Create a Vector Search Index with the Server Web Console.
You can download a sample dataset to use with the procedure or examples on this page:
To get the best results with using the sample data with the examples in this documentation, import the sample files from the dataset into your database with the following settings:
-
Use a bucket called
vector-sample
. -
Use a scope called
color
. -
Use a collection called
rgb
forrgb.json
. -
To set your document keys, use the value of the
id
field from each JSON document.
For the best results, consider using the sample Vector Search index from Create a Vector Search Index with the Server Web Console or Create a Vector Search Index with the REST API and curl/HTTP.
-
-
You have logged in to the Couchbase Server Web Console.
Procedure
To run a Vector Search with the Couchbase Server Web Console:
-
Go to Search.
-
Click the index where you want to run a search.
-
In the Search this index field, enter a search query.
-
Press Enter or click Search.
Example: Running a Simple Vector Similarity Query
For example, the following query searches for the top 2 vectors similar to the vector [ 0, 0, 128 ]
in the colorvect_l2
field:
{
"fields": ["*"],
"knn": [
{
"k": 2,
"field": "colorvect_l2",
"vector": [ 0, 0, 128 ]
}
]
}
The Search query is only a Vector Search query.
It only returns the k
number of similar vectors.
When running a hybrid Search query, the Search Service combines the Vector search results from a knn
object with the traditional query
object by using an OR
function.
If the same documents match the knn
and query
objects, the Search Service ranks those documents higher in search results.
The document for the color navy
should be the first result, followed by a similar color.
Example: Running a Simple Hybrid Search Query
The following hybrid Search query searches for the top vector similar to the vector [ 0, 0, 128 ]
in the colorvect_l2
field.
It also runs a Numeric Range Query on the brightness
field to only return colors that have a brightness value between 70
and 80
:
{
"fields": ["*"],
"query": {
"min": 70,
"max": 80,
"inclusive_min": false,
"inclusive_max": true,
"field": "brightness"
},
"knn": [
{
"k": 1,
"field": "colorvect_l2",
"vector": [ 0, 0, 128 ]
}
]
}
The Search Service combines the Vector search results from a knn
object with the traditional query
object by using an OR
function.
If the same documents match the knn
and query
objects, the Search Service ranks those documents higher in search results.
The document for the color navy
should be the first result, followed by colors that are similar and match the brightness
field query.
Example: Running a Semantic Search Query with a Large Embedding Vector
The following query searches for matches to a large embedding vector, generated by the OpenAI embedding model, text-embedding-ada-002-v2
.
You can find generated embedding vectors for each color’s description field in rgb.json .
|
This query should return the document for the color navy
, based on a generated embedding vector for:
What is a classic, refined hue that exudes elegance and is often linked to power and stability?
The following shows part of the sample Search query:
{
"fields": ["*"],
"knn": [
{
"field": "embedding_vector_dot",
"k": 3,
"vector": [
0.024032991379499435,
-0.009131478145718575,
0.013961897231638432,
-0.024734394624829292,
-0.020605377852916718,
0.006739427801221609,
-0.012539239600300789,
0.0063192471861839294,
0.000004374724539957242,
-0.030252983793616295,
-0.010944539681077003,
-0.0012845275923609734,
0.0059850881807506084,
-0.006388725712895393,
-0.016304319724440575,
0.03046472743153572,
0.029988301917910576,
-0.013121536932885647,
0.01815708354115486,
-0.011096730828285217,
-0.0423753522336483,
-0.0023523480631411076,
-0.00022332418302539736,
-0.0024681459181010723,
-0.02911485731601715,
Due to the size of the embedding vector, only part of the full query is being displayed in the documentation. Click View on GitHub to view and copy the entire Vector Search query payload.
Make sure you remove the lines for |
Example: Running a Semantic Search Query with a base64 Encoded String
If your database is running Couchbase Server version 7.6.2 or later, you can use vectors encoded as base64 strings with Vector Search.
For example, the following document describes the color navy
, with base64 encoded strings in the embedding_vector_dot
and colorvect_l2
fields instead of arrays:
{
"id": "#000080",
"color": "navy",
"brightness": 14.592,
"colorvect_l2": "AACA",
"wheel_pos": "other",
"verbs": [
"deep",
"rich",
"sophisticated"
],
"description": "Navy is a deep, rich color that exudes sophistication. It is a dark shade of blue that is often associated with authority, stability, and elegance. Navy is a versatile color that can be both bold and understated, making it a popular choice in fashion and interior design. It is a timeless color that never goes out of style and adds a touch of sophistication to any look or space.",
"embedding_model": "text-embedding-ada-002-v2",
"embedding_vector_dot": "i2YKOzXJwrsL+RQ77hrZuyqurLwbCXk8dzvIvC/qkLyVlzy8d8yIvBNleLwZfMc7ngAMvHp+z7xf0Q29RLigPD/V3zwQpLi8UWDoPP09Rbxmv7i7RaIEPffyZ7yIIwO80jmJvPi3NrvUfJA79UChvOlKIDzBB6S8FsoAPKQpaLz2mcS6udLivLEJzTw8ObW7oWiovMEHJLxXnMw7XNgwuzdWdDwDVRQ7vdo4vBt1JDt6NKW8jfM7vG4ZDztzM3K8IdadOyAgyDxAZiA9pATTPE56Eznapey83tJXPCdGEDxFooS8mtMgPS8PpjyLsLS7ksN0u44CNbrVRPO7weKOPM173bufo9m8yaukvCdrpTyi5uC8CAC4PP7zmjx/cAk9EbOxPPL9mTyn2Jo8da4WPGz7HLxZBGk8g+eevICklzqkBNM7qOeTvDlA2LyEZVc7M2GmOxN4gDz5kiG873N8PJrToLxy2s675WdfPLa08DyllRM8bohOO3Jrj7yllZM81ouJPDBDtDxAQYs8DC2jvCuYEDySw/Q8J0YQvelvNTkV4Jy8RLigvJyqfLzbNq07G3WkPJEgp7yvfJu8b3IyPTvgkTw5QNi80ahIPEG/wzqhQxM8PbdtvO/fJ7zmdti8KJ+zvICklzxtCpY8v5+HvKOGGjyVcqc8JHLIO3YHOr0v6pC8NaQturPzMD0y0OU8AFw3PKgMqTwDn768ypWIPMvJFr3/J6k87ynSunuNSLx10ys7bmM5PJJ5SrzSgzO7R571u6pANzwEZI08ex4JPCWm1rmfDwW82t0JPSGxiDuEZdc8auwjPMvuq7woDvM8iVeRPJmfkrxeZWK7W+7MPI+A7boeAlY7GCMkPNTrT7unswU9pCloPMayRzy2j1u8DWExvGknVTzNe128A5++PFvuTLzjtRg867I8PAY76Tz/TD490oOzuv1iWrzSgzO7CX5wvJA2wzucqny7tN2UvGsgMjoOlb87AWswPeOQgzwTQOM74AbmO/YqBbyfo9k8IPuyvLxcgDzY8yW/0SqQvIRAQrpM/+68BPjhPC1v7Dw50Zg7ahG5PA08nDss8TM8lXKnvD4yEjx6fs+732OYvPcX/brd6PO51wnCOna9j7sekxY8j7gKPIMxybwOBH88WDyGvAPEU7szPJE8g+eePO2cILvG/PG7914TvJ+j2TrjkAO99xd9PCnTwTw8Xko8o9BEPQkPsbojiGS8U9sMPQGQxTuiwUs8uWMjOw4EfzyISBg7jT1mu+6rmTt38R081KGlOnycwbzcRaY7V8FhOlt/DT2M5EK8yaskPA5wKjxhqOk8y11rvLtNhzxRYGi8jamRvOxokjyxU/e76UogO7qXMbtW5va8MI1evEiIWT34tza9eg+QvKzN6Lx71/K8+RBavCY3Fzw59q26psmhvAN6qTyVTRK7JjcXPTKrUDzb7IK8p7OFPE8d4bs457S82t2JvMmGj7xYYRs9sb8iPPVltryw1T6845ADPd3D3rzsaJI8cMvVO6Lm4LpPrqG87XeLvKezBT3VRHM5Dt9pvB7dwLqszWi75OkmvO6rmTpteVW7YyOOPMO5arvNoHI7myxEu5mfEj2OArU75A68vIMxSTxKl1K8zgyevNCZTzuu61q7R1TLvE1GBT3nz3u8hXRQPIc5H7yoVlM8/C5MvBUFsjpRhX08SrznOi62ArwKaFS7cE0dvJ9+xLv71ai6hgWRPGHN/jwZDQg9w2/APPLYhLvcaju61rAeuwCBzDuhC/Y7ddMrvQZzhjzgBmY8TulSvGjOMbt1iQG8RJMLvSLAgb3J0Dm8K70lvXoPEDyUYy68mQ5SvIQbLbwxd0I9tRGjPIRl17t4lOu8iXymOkCLtTsvNDs8sb8iO/vVqDyvxkW8zjEzO4x1A7xGRdK8Q901vSsH0DzmLC68O+ARvbRMVDxjSKM82qXsO/jcy7v+zoW8mem8PM5WSL2E9he8tHHputcu17sUrA48CQ+xPBW7h7zIGuQ6hZnlPEZF0jyWXAs9Pnw8PeXTCrw6dOa62+yCPApDP7xmvzg60wFsuqCNvbwAEo27ddOrvGtq3Do9/oM8HamyPCM+ujz0isu79/LnO9I5CTzgchE8hPYXvKFDkzyFKiY8Zi74OaFDEzwYxnE7LzQ7vANVlLxgBRy7YahpPEI9/Dva3Qm8GkGWulyOhjvKup28IdadPMF2Y7xjIw481HwQO9aLCb2GBZG8Iz46PAHa77sPJgC9EMnNvEG/Qzz/J6k84AbmO+3myruNPea8RwqhPNqA1zxLXCG9RvsnPP8nKTtb7sw77XeLPFFgaDkna6W8HgJWPf7OBbs17tc8CmjUuvKR7rsqrqy8KA7zu7XsDTwf7Lm8wVFOvEpNqDrvc3y8BjvpPMDTFTtqx4485R01PH0a+jxKTai8WDwGPLOphjt/lR49ST6vuxdtzrtAizW7BGQNvRdtzrzHnCu7H8ckvHWJgTwaZis6hzkfvKhW07z8eHY8YpJNvAl+8DzkxJE8yxPBuyuYkLyNPWY8gntzPAG1WjrbNq28iG2tvLURozwKxQa9Zi74PBGOnDyBIlA8/rt9vHfxHbzG/HG8mQ5SvF3ClDzplMq7rkgNOxB/o7p+hiU9KOldvFz9xbyXta67pCloPO6rmTyXJG47/5ZoPGGo6TqNYnu8CVnbvIJ7c7zTSIK5zXtdvIPCiTxNa5o82gIfvNqA17wbv848mkJgO4yamDypiuG8tyAcvKLByzuOJ0o9FbsHvKFDk7xRmIW7LzQ7PJ4lobzKlQi9wK4APb8dwDyUY647w0qrPFkp/juxv6I8DFI4vJH7Ebnl+B88p/2vu0s3DLzFNI+7ruvavKLmYLyTCou8Qj18u9X6SLx1rpY7VA+bO21UwDwwHh88s84bPQN6qbykKWi72gIfPdEqkDrCYEe8dHoIvW9yMrtw8Gq8T4mMPH/fyLmTiEO8M2GmPBbvlbwVuwc6Tp8ovJpCYDwYody87eZKu4detDyCsxA7GTIdvSu9pbyfyG67HifrvHZRZLz/AhQ7Zi54OxihXLyw+tM8xX45PHKQJL0WFKs7d8wIvFAs2jusqFM6+NzLvCIKLL3xyQu8dxYzvLsV6rzCFp27ORtDO6sFBrz5bQy8Lw+mPJkO0jx24iS77GgSvB2EnbybLMS72gIfPMF2YzwRaQe8LW9suoW+erwU0SM8DAiOvGzWh7sW7xW8WZUpvFkE6Tz6xq88ABKNvIl8pjycvYS77GgSvIc5nzzvTuc7QvPRvJiQGTxG1pK8qyqbPJWXvLvlZ1+8n8juvP67/TxkfLG81R9evPSKSzzUxrq8PSOZuwfxPjygjb28OMIfPK9XhrwZDYi8uC+VvBCkuLwb5OM8VOqFu6yDvrznz3s734itvGAqMTxUDxs8zXtdvBpmqzx99WQ8MI1eOstd67yX/1g8fmGQPMF2YzgE+GG99NT1vB4n67zvTuc7HxFPPCZcrDtg4Ia8udLivBocAbx+hiW7gww0vPv6vbxw8Go8VA+bvKS6qLv43Eu8VkOpvCsH0Dx6D5C8nRaoOfeoPbyP3Z879pnEu8U0j7k/1d+8d/EdPPqhGj12UeQ8ffVku9O3wTwRszE8+7CTOqmK4Tb38ue7f5UeOojc7Ls3syY7YE9GO92eyTyAE1c81osJvMd3FjzYYmU8Hm4BPSBFXbz8U+E7MLLzvKezBb1ozjG8P/r0O7Hkt7u0cek8F21OvKzNaDt3FrM80JnPu1ZDKTyISBg8TunSPKOGmjtPrqE8GQ0IvFGYBTyHg8m7IGryvLRx6bxc/UW8KOndvDeOkTya06A8TnoTvIc5nzyo55M7LzS7PA8mALv8CTe7vf9NPIH9OrxhqOm76n6uuy7bl7wVuwe9kMcDvIJ7czyu61q8sNW+PFt/Db1M/268to9bOjdWdLvLONY8BhZUvLtNBz2inDa8CkO/u1t/DTwbv047uzr/OwQd97tXLQ091URzPHBNHTz9v4w8Wd/TOxB/I7zGske6PW3DvFVovjzq7W28ZKHGOzIIA71LN4w7Xxs4vQSuNzwPSxW8/hiwu7VbTTzfK/s7aSdVvNiH+jx2B7o1U9uMPFg8hjwjrfk7mq6Lur+fBz00lTS7wXZju/SvYLsJDzE8KlF6OzvgEbztC+A8r3wbPcZDiDyVl7y6yYYPPM+K1jxz6ce8trTwOhjGcTya+DU8mZ+SPOHLNLzpbzW8FbsHvc4MnrymE0y7YAUcPBxQj7zyIq+73i+KPPIiL7oDeik8nIXnvGYJ4zvFo0485WffO1nfU72AOGy8rhDwOtDj+Tv/ApS70ON5vNaLiTvqWZk8J7XPvD0jGT3LyRa98zEoPB/sOb3/TD48X9GNO9BPJb1KTag8ZHyxuydGEL09t+27jWL7O/zkIbzfPoO7MVKtOyOt+bjXmgK71rCevMU0D7yzqQa9bojOPLyBlbx1dvk7vumxPNxqu7yFTzu8X/YivasFhrzoFhK84fDJvOYHGb2wi5S8MVKtPOyNpzxs1oe8/s4FOz6h0Tson7O8uC+VPIeDSTyeb0u8MGhJPNfkrDwtb+w8mmf1O4cUCrz+u326y11rvEpyPbxcItu7yD95PBsJ+Tui5uA8t/sGPUee9bwXSLm8yBpkPOrI2LsqUXq8ST4vu0qX0jwYoVw8XCJbPImhOzv3zdI8Fl7VvF5lYjv6oZq8o9BEPDn2LTsOcCq8ydC5O8ayR7xChBK9ZUGAOR/suTwbCXk7iG0tu6xeqTuzqQa8CX7wt6ezBbwO3+k8QhhnPH315Dv0iss8NzFfvUWihLwAEg29GCMkOw2Gxrw6Krw88ckLvDOGOzzx7qC8nkq2vDpPUbpytbm8qDE+PFirxTw0lTQ8qyobuoB/Aj1bf408/FPhO94virwBkMW8nRaoukFQhLy8pio8pyJFvMukgbsAXDe9A3qpPJqui7woeh68QwLLOieQurykTn28SOULPNyP0DvxyQu8pZUTPCpkgry8XAC9JSievGVmlbxmLvg6RwqhvKjnEzzu0K67B6eUO8xHz7w2/VA8QGYgvJZcC7ykuqg8V3c3PrmIODxP+Ms8uHm/PNX6SLzLyRY8osHLPG6tYzvuhoQ8j7gKPHuyXTyjqy892D1QvFmVqTt71/I8DRcHvZmfEr2ffsS81URzuvC6ErwKxQY4tkWxvIhtrbsGFtS7LSVCPHp+TzyFmeW5F23OPL9C1Tsw+Yk8a2pcvLk+Dr0874o7gKQXuw9LlbtpTOq7cabAO5yFZ7zYYmU8weIOPKdH2jt71/K7udJiOkS4IDv0r+C7gzHJPIdeNLyE9pe75ULKO0qX0jsU0aO81HwQvLcgHD1CPfw8f7qzu3+Vnjz38mc8798nPFQPGz2NYvs8cTeBvLIYxjxXd7e7Tx3hPNOSLDxFEUQ8WnAUPCzMHr0qrqy68RO2OmEUFTx6Wbo6LtuXvAY76Tsy9fo6ESLxvPSKSzyzzps8ZHwxuyIvwTwyq9A7mq4LvKsqm7yI3Oy6OawDPJLD9Lw0ukm8NzFfvE7EvTt4lGs5tVvNO2WLKrvQvuS7H6IPPHhKQTzBLLk8c5+dPGhx/ztIY0S8ruvaO44CtbxuYzk8T0J2PGrHDj1+q7o7k4jDuxjGcTyIIwO85nbYO8ecKzuM5MK7osFLO4htLTyfWa+83yv7u2BPRjq9kI68J0YQvY2pkTyUPpm7pE59vKakjLxPiYy8w0qru9B0Ojz668S88ckLvdknNDwQfyM7upcxvVt/jTzYYuU7LMyePHfMCL1ZKf67Z3WOPJ07PTwJNMa7/b8MO1ecTLzZJzQ75dMKvW0vqzrd6HM8lAZ8PESTC7yJfKa86SULu8O5arxzDl28jRhRvCUonrxeinc74aYfvN3o8zq17I28xtdcvAi2DbmcvQQ7n6NZu5ARLr3HnKs8unIcPf9MPrskTTO8Oiq8OpnEJ74o6V09tewNPEpNKDziSe27caZAPCsHUDxTSsw7bVTAvIl8pruz87A7r8bFOwseqrwZMh28rPJ9uwl+cLttL6s8qYrhO06fqDx2LM88p/0vPUnhfLz/ApQ49NR1O1DiL7yOArW6foalu/eDqDysOZS8ZUGAutyPUDxZur67uxVqPFirRTxQvZq7QGYgPJKeX7t6NKU88zEouyBq8jys8v26sS5iPM/2gTzQdDo8CQ+xvCIvwTvLXWs8ouZgPPMMkzt6Wbq8I4jkOn315LzzVj06z4pWu3kAFz2II4M8U9uMPBCkuLtAQYs76n6uvCJU1rzzDJO8o6svvMsTwTwiVNY63cNevLvwVLzfPgM8NEuKvNC+ZLufo1m8F0i5OTRLCrzBdmM7/0w+PClVibxwKIi7Ne5XPEIYZzseJ+s7+7ATvJck7jtHLza7BZgbux4n6ztq7KM8M4a7vPKRbrxWQ6m8GTKdut+ILTxYPAa915oCu2ipHLuvVwa8F0i5u8ukgTwrmJA7zlZIvAOfPjkF4sU8whadumVBALyXta635Yx0PKLmYDxwy9U7T0L2O+YsLj0i5RY8MLLzvOGmnztgKrE8CsUGPEs3jLyfyG46SeH8O/VltrwItg07JabWu8IWHT1BUIS8JHJIvK9XhjxFEcQ8NaStvK/Gxb0xd8K7AFy3PNe/FztLNww8s5Z+PKtPMLyWgSA8iVeRPMrfsjxZ39O4LrYCvAWYGzy+M1y85lFDPLZqRrvq7W07GhyBu7PzsLzQvuQ8Sk0ou8qViLt+q7q8s6mGvPdek7tlZhU7/Hj2vFkpfjySnt88kp7fPFpwlDyYkBm6wmBHOp+j2bxlZhW9jamRuw5wKjxJ9IS71ouJPGaao7xI5Qu7WQTpO+13izv8eHa9+Lc2O+LarTslKJ68q08wPUnhfLwJDzE8LKcJvLaP2zziJNi6grOQvEF1GT0Itg28L1nQPLmIOLqpiuG82Bi7u1z9RbzGaJ08JctrvKbJoTwly+u8zXtdu8td67zhgQq8urxGPBEi8bwXSLm8K70lPPTUdbx9LQI9Lw8mvRxQDzwb5OO8OMKfPAWYmzxz6ce63i8Ku2bkzTr8Lsy69iqFvDWkrbtjxls9y6SBuxYUK7pBUAQ8Y8bbvLsVarvD3v88zjEzPBt1JL2NYvs4OfYtPEnhfDy2j1u8uWOjux4na7yB/Tq86W81vN4vCr3Kup083z4DvFwi27w3jpE8Ef1bvN9jGLy/HcC721vCO9iH+jtw8Gq8VKPvOxgjpLzcaju8JHJIvDmsAzww+Yk8jORCvANVFLzBByQ7tAIqu8QllruJVxE9Xop3u5LD9LzGjTI7BjvpueGmHzxwKAi809xWvLFT9zsF4sU7ki8gPJ5vSz1GIL28/Am3vGipHLwF4sU8GhwBPCRNs7tNaxq8VKPvvBzOxzvuGlm8RiC9vH6rOrwqZAK9E0BjPPzkoTuFmeW7K5gQPTBoSTzwupK6MGjJvPKR7jv6xi+93Z5JPPwuTDz7+j08jHWDOm7SeDzl04q87DD1PNbVM7yD5548dztIPD/69LyaZ/U8W8k3PMCbeLz6fAU8+TXvum5juTy+WHE7foYlPEpyvbzuqxk8f5WevNxqu7w9Ixk9oUMTu+yNJzxIiNm8BjvpPE1GBTxHnvU7yD95vJ3xkjtu0ng8NHAfPOYsLrzDb0A69RsMva2SNzy7FWq8O+CRvBocgbsVuwc7CkO/vHuyXT3VRPM77ynSO4gjg7vKlQi9N1Z0vBYUq7zBLDm8bXnVuiBqcjzx7iA8SOULPBUFMrxCGOe8icZQPEiI2byM5EK7LrYCvXMz8rympAy8tEzUPMayxzucqvw81rAePa7r2rngcpE7VKNvPJXhZjwgRd28gMksOzRLCj0ntU88gzHJvMtda7uEZdc8cVyWvMayxznlHbU84OHQPPcX/TooxEg9IbGIO36GJb0mXKw734itOzb9UDwwHh88OMKfu5JUNTtKl1I8eQAXuwrFBrzt5ko8wK4AvE56E70PJgC7gBPXvMEHJD3+GLC8ZUGAvPSvYDyb4pm7KlF6PN6twjsR/Vu79NR1vAx3zTxXLY27GQ2IvJxg0rzt5so8xTSPvLRMVL0ganK8G5o5vELzUbupr/Y6cPBqvDSVtLuyGMY8FSpHPI2pET3LpIG8L+qQvLnS4jy6l7G60SqQvEI9/LsPS5W8"
},
The following query uses a base64 encoded string for the same query as Running a Semantic Search Query with a Large Embedding Vector to return the document for navy
:
{
"fields": ["*"],
"knn": [
{
"field": "embedding_vector_dot",
"k": 3,
"vector_base64": "1uDEPDKcFbxxwGQ8yZ/KvJzMqLxr1tw7YnFNvLARzzuZypI2G9X3vLpQM7yYXai6jx7EO4RY0bujkIW8KpH5PAeq9Ty3+1a8Kr6UPBDPNbzHkS292ikauyEsarmewCG7SILuvOSCorzv9c48ND3IvEiC7jqnP1W8+iisPCxfx7tKauC8Hx7NvLIFSLuQZQM7N6zIu+xgozyjY2o6s2arO5fWmTt6JfQ71QbwO+J0hbwbr8y3fec6Oxdm9zvVWba7XGEau9FXILv7QtA8WIUvPdqWhLzGSu687ecxu71SyTsJeEO84MziPERACbx55aQ6pKqpOu+I5LzZdfC8RuG7t7/ze7wqvhS8+6+6vNR/4Tz5NLM5JVubPHtsMzzl74w892blOyZPlDynP9U8ArTmOlHBUrwpd9U60/hSPDjGbLrK5ok7zQ5Luw1UrrzS3i48/nGBPBeTkrs9VoG8eBdXukV0UbrS3q67FBiLvPP3ZDyIWmc8CcuJPEARWLy0QIA8P/ezPEq9pjxiBOM7ZOzUO7xe0DxG4bs7o2PqvM17tbvj+5O8NTFBusSpO7sPtRG764ZOPCbiKTpxmjm97Q3dPFkMvjw/3Y+9k41EPKCok7y/IJc88kqrvJ9hVDy2juy8nebMuxbf6DwAEzQ9fec6vL2ljzxgPQW8v42Bu8uHvLyDJAm9pOp4uzf/jjwW32g73MpMvOuGTjzHawI80t6uO/eTgLx9VKU80ZdvPBHpWbsI8bQ8kKXSPAtGEbyuA7I79KuOvDMjJDxtvs4712fTO+M7YzuMyee5fA3mPCXIBbw/9zM9lKdoPJF/J7zM9KY8HirUuzJJTzxuK7m8iFrnO19JDLzNDsu737I+PIMkiTvea388N/+OPCw5HDxb2gs8nDmTO8tAfTzoMfK8hiafO9xdYrwQqYo8PGKIPDxiCD1KKhE9lo/aOcA6u7pG4Tu7QNEIvBdmdzxI79g8x9F8vBMkkjuWdTY8XPQvPVzOhLwb1Xc6InMpulOPIDs4hp08uFw6vKPQ1LwL2Sa/qpQxvLjJpLymS1y84Ka3PDqUujzGJMM8QessPLhcurzjjqm8nMwou8oALjwYh4s770iVuw5u0ryinIy8mv7aO1hfhLsvYd073mv/ur5sbTzRl+881cYgvXSoVrxiBGM8bthyPGuwsbqPiy67ABM0vOEtRjvdEYy8s4zWPOzzOLzWjf47f/VXPbpQs7vz9+S8SILuPGgbhrv6u0E9zSjvO2+yxztIrwk8vDilvF17vrrT0qc8Li2VO/5E5rx1nM88Dm5SvDkz1zzimrC77tuqOy7aTjw9fCw8IewavC3m1Tz9fYi8ZieNvPFWsjyBVjs8tNOVPHATq7u0pnq8C9kmvI6XNT30fvO8hKsXvEBkHrz3QDq8vpmIvDULljw/HV+8Et3Su6FVTTgHqnW6pZ4iPCtFozz9fYi4q0FrPJ4tDLwQPKC8/X0IvPR+8zvohLg8oHv4uXa287za/P68p/+FPDrngDxV8AM9tKZ6PLjvT7vr2ZS8OXqWvFOPoDxtUWS84MxivK/dhrwdvWm88Hzdu4O3Hr1Wkba8XGEaPOIHGzyIhwI8c/ucOyCl2zxIrwk8JNSMvE14fTxApG27XDR/vMCnJTw8iDM88TAHvVw0fzzCCIk7wDq7uzrnAL31xbI8ZXNjvL2/s7svYV264/uTO5aPWjwecRO8uv3su9HEijw7bg+7lo/aPFK1yzwNVC48vaUPPCuyDbxdez68MDuyvNO4A73Z4tq6GXuEvCqRebs/Hd+7EM81vLvXwTulMTi8A447vT8d37z8Nsm6kb/2vO7bqrsDjru8t/tWvCxfx7yx6yM9A447PIZMSjp5nuW8EDwgvOjxIjo5oEE8YH3UOzEvqzzoF868qxtAPIqVH7xSCBK9k41EvNJLGT2quty8TtngvHpSDzwrRSM8kb/2O8/cmDw9D0I8VFZ+PN5rf7w7rt68XDT/u/Hpx7yMNlI8XpViPMIICb1hxBO8rMh5PdP4UjrCmx48t2jBPB4q1DsRMJm7rpbHO7bhsjmB6VC7nAz4O/4qwruk6ng7ND3IO6c/1TqUgT085iNVPKTqeDyLr8O8KPBGPInhdTuAz6w8JZvqu8YkQzzJn0q8+pUWPHheFj2cDHg8UYGDvCq+lLs4xuy8jx7EPDz1HTzL2gI78/fkPOzNDbx4F9e7mZ33PN2+xTy1WqQ8UcHSO5md9zt314e75QmxPNmii7zszY28QH5CvFiFL7xnQbE8fXpQvDYlOjqXaa+8HkR4u2dBsTx1nM+8kuCKPJhdqLviBxu8sX45PPmhHbxuRV27+TQzPaNjajv5Dog8LyEOPEdoyrwWuT28RuE7un1UJTy8XtA6kKVSvM+vfTyVCMw7KpH5PKQXlDu4yaQ5Yt43PAqS5zy+LJ68s4xWvGPSsLz/sVA8sVgOubvXQbv4Gg+7+O3zO7XHjrwE7x688koru59HsDtu2PK8s4xWPCKzeDth6j67YGMwOhPRyzxu2HI71icEvC2mBr0ldb88+pUWPf/4j7yrQeu8v40BvQbjFzzzZM+7UggSPStFIzyQOGg82XXwuyXIBbwwOzK8MBWHvNdBqDyiScY7OQ0sPNqWhDyRf6c8JuKpvJ4tjLw2JTo8eITBPE4spzyIWuc54rTUO2pp8jtNpRi8SQl9u2IEY7sDaJC7YgRju8P8AT2LAoo7h60tvH6U9LvAOjs9AMx0vHf9Mjxh6r68FFjavKLcW7tvjJw9x6vRu0Er/LsT0Us8rPUUvOvZFLwZDhq9bVHku6z1lDwH/bs8e9mdPJvYL7gKUpi8TMtDPIw20jt+wY+7Y/hbPAQVyrxZeai8BuOXvDXeertnQbE6g9HCudGXbzyinIy6pZ6iPIVy9TyhVU084tp/PFGBg7zhgAw7u7GWPHdqnbxeAk08/kTmu+/1zrvRV6C80h5+PEuxHzz5oZ28DgHoPG0RFTxkPxs6SMmtuRvVdzy/IBe8UBSZO8UKnzuOKku7Kr4UvA4BaDue2sW8/b1XvCQUXDzIMuA7JO6wPF6VYjmwN3q7m4VpOjULlrxX/qC8D7URvI+x2boG45e8to5svDMjJL1lWb87r90GvYHpULxI71g809InPMdrgrwvIQ69Px1fPPsCAT2n0mo8gQN1O6tBa7zC2+07vb8zvAEtWDx6JXS8n/RpOy2mhrytKV07ZTOUvDtujzua/lq5U4+gvGniYzyhwjc8N5KkvOGADD0BgJ68AuEBvU8gILxvjBy8uXZeOxSroLx0gqu7Yeq+OwvZprwT0Uu8NiW6vC2mBjyNECe81k0vvM5vLjy+bO28WBhFPDHo6ztmuiK9Mejru/19CDxRwdI6TaWYu4ZMyrxYxf48lIG9u/+x0LyjY2o8wggJvfPRuTv/+I88IrP4vMttmDzWupk7Gxy3uxdm97srRSM85BU4vAWcWDyfIQW99Z+HvMNi/Lz06927KmtOvCGZVLwtpoa8vyAXvJP6LjxaALc8aikjvLHro7wgEsa8EKkKvdJxRDxrHZw8HnGTvD0PwjzVc9q7y0B9vEJyO7zPidI7uTaPOwxgtbqjY2o7Eko9O0VarTub2C+8B6p1Oy4A+jyS4Ao9st+cOzKclbvApyU8AYCeu3a287vBLrS6Jk+UPFMitjvI8pA8IrP4Oo6XtTw2eAA8Di4DPQUJwznrhs67veXevODMYr2i3Nu76BdOO2ZNODtEE248hiYfvP/4D7uVW5I8X4lbvIetrbwuLRU65QmxPOqSVTw+Azs9HnETvUzxbjwGUAK8Jk+UvB5xk7vtDV2862wqOyZPlLkEgrQ81ieEu4B8Zjwlm2o8oHv4O8om2TvszQ089D4kPJ/0abwXrba8nAz4vKXEzbwW32i8hOtmPMsaUjtWJMy8hcW7PDEvq7x0gqs6biu5PDK2ObxCcrs8PPUdugMhUT2E62a7q26GvPEwBzz1n4c7+igsvMyh4Ltxmrk8STaYO9k1obtXq9q7jDbSPOFT8TvviOS8gTAQvJpRITxQzVk8u7EWPD18rLwZewQ8T7M1vHiEwTzWupk7bIoGuha5PTzzt5W8bx+yOgq/Aj3K5gm8RceXPNP4UrwDO/W8dVyAvPtCULwszLG8ETCZu+A5zbsuLRU9w2J8Omb68TomInk85pC/uiuyjbpuRV28IKXbO16V4jyge/i76xlkO6XETTvTuAO8knOgPHOOsrxmuiI7KXfVu3iEQbxlc2O8OIadPHol9LspCmu8X0mMPMK1QrtgPQW60VcgvZSn6LsYGiE8JXU/vOqS1byulse8WiZiurLfHDsvIQ68ClIYvfeTgLzT0ic8OucAvduwqDxNvzw42x2TPBHDrry7sRY862wqujIJgLzoF848e2wzPDf/Dr1Fmny8zPSmO+eqYztZDL48lxZpvBettry3aME8jImYPOFT8ToYhwu84rRUO+qSVbxXaws7/pcsPKl6Db1w+YY7r92GvNdn07zJeR+8IrP4vNAQ4btd6Ci8e0YIPcLb7Tv231a8Jk8UPHCmwLtuKzm8zeifPHgXV7smInk5k/ouvMIIiTz8iQ89n/RpPDqUurw/ism8a0PHvDeSpLu4yaS8TPFuPApSGDtWt+E8MehrO/k0M70HqnW8T2BvPMSpu7whLOq8mv7aO6+wazxfSQw8v0bCPAiEyjp3ap08ckdzufvV5TqsyHm8O67ePI1Q9ryPiy69ZcapOoCpAby8OKW8d2odvJ8hhTx+lHS7xkruOdFXoDxbrXC86xnkOkSAWLqyH+w8mcoSPQLhgTzJeR87GU7pvBscNzte3KG70NARPMrmCb2BMJA8ecsAPE2lGDuIh4K8EnDou5uF6Tvl7wy8cYAVPC9HuTzApyU8jirLvPQ+pDyiSUY8YKP/On3nOrzTZb28qBkqPNdBqLyi3Fs8MVXWvF0O1DwPtRG9g2TYO3iEQbxvjJy8UyI2vP4qQrw8NW28C2y8PNjINjxXq1q8n/RpPBQYC72f9Gm8K9g4vBEwmTsMYDW8gVa7vKUxuDouLRW8JQhVvG1RZLy7sRY7TiynvHUJujyHrS08R/tfPiHsmjxApG28k/ouPatBazy+LJ471QbwPLaO7Dl6Ug+8+O3zPPZMQTxgPYU8WpPMvFK1SzxFx5c6xcNfvBRYWrynkhu8T2DvvNfUvbzL2gI8nyGFvHA51rvAOru8amnyPKWeojwS3VI8XxxxuyNnIrrcNzc8T0bLvCONzTqpM048gcOlO1f+oLwWJqi7yiZZvJMgWrz2uSs8DVSuPBP39jpX/qA8RVqtu1w0/ztmuqI8bRGVPCzMsbxM8e67LVNAPFCnrjtKauC8qpQxPCxfRzw8Ygg9R0Ifu57aRTwIXp88C2w8u5l3zLtKamC8RuG7vKZL3DxgY7A6gDyXPDesSDwuAPo8O67evCq+FL0xVda71QbwO1sa2zx5ywA7SO9YvCWbarrrhk47u4R7vMttmDxFNII8KpF5PLFYjjwJy4m84tp/Oy9h3bvmkL88MM7HO9B9y7w7rl687GAjvI1QdjrkqE08kyBaPMjyEDys9RS8r7DrO3VcgDyEGAI6Cr+CPLIf7DvAOru83VFbvDXeerzR6jU8AMz0PDeSJD0pCuu7ygAuPL9GQrxz+xy8qBmqO4PRwrzq/7+6Ft9ovB4EqbvdpKG8OU17vLSAzzmgqBO7CQvZvGmiFDzGSu66amnyuoNk2LybRRo6Y7iMPO0NXTzMoWC8pOr4vP19iDyQEj06rgMyvfB8XTzp5Ru8vVLJPCkKa7xn1Ea8OIadO4kOkTwFnFi89t/WOwYjZ7nwfF28j4suvLzLujylnqI7Li0VPDxiCL2C3cm8F0BMvM/2vLx48au8BiPnusJI2LxWdxK80kuZvEfVNDsZoa86vDglvHTvFTyVCEw8HkT4PMttmLySc6A8wtttPXnLgLz3QLq75Qmxu3xgLL7n/Sk9Vz5wPP8eu7w+cKW7X/ZFO0vXyjtTjyC8hZ+QvMXDXzwdEDA8XQ7UO11VE73Zogu8m9gvvPbfVjsAzPS7Yt63Ow4BaDweRPg6YVepPEjv2LwNVK48l2kvuuP7k7vOlVm8qFl5vOLafzzjIT+7KcobvDkzV7x95zq712fTOA+IdjwUPra7GgITPLoqiLwh7Jq84DlNvO/1zjv0fnM8zm8uPDK2uTwrso07InMpvC3AKj3t5zE9lxbpO2P42zxZeai8GpWou58hBbuk6ng869kUu92+RTxiBOM82rwvPA4B6DxTj6A7ZvpxvECk7bonaTi8iFrnOkV00TuBw6U82eLaOzxiCDz2JpY7bDdAPCLgEzwpCms8+6+6vJClUjzmI1W8HX2aPPjt8zvkFTi8sVgOPCkKa7zZdXC6VQqovNniWjwvtKO8vb+zuwWcWLvSccQ8u4R7vA16WTuqlLG7zXu1uz/djzzYrhK9cnSOvKkzzrwYx9q7wrXCuwYjZ7uoGao89cUyOna2c7xGTqY8pD0/vCF/sDp2tnO7/KMzPVttoTxaJmK8remNPP6XLD3dEQw9RO3CvJ4tDD2oGSo9/DbJOkWa/LyTjUQ8LDkcPKmguLxVCig5sViOOzULFj3ycFa76IS4u/8eu7pQ5/27e2yzvC3m1b15ywA89KsOvNw3N7y6UDM8u0SsPE9Gy7uFcnW8ISxqO6ZL3DwUPra7pQuNvIjHUbrxw5y8st+cPOr/P7qUFFM8/x47vEkJfbz7QlA8V/4gu+J0hbwO2zy8pQuNvBYMhDyQOGi8rx3WvO+I5DqXFuk710EoOwiESjyjkIW8NISHu4O3nryebdu8U/yKvC2mhrxoG4a7meS2OyLgk7xak8w709KnPJF/pzz9fQi9Z0GxPJmdd7vLbZg7VKlEO7LfnDzq/786to5svNjINrzGd4m8ni2MvE14fTxDjF+795OAPIetrTvQY6e80t4uPJnkNrsvIY489D6kvJ7axTyjY+q74nQFvKsbwDsm4qm7s4zWPPdAOr2siCq96Z7cuf4El7yVCMw8InMpvUnj0TvwD/O8dQk6u5BlgzzBVN+72TUhvL+zLLxfiVs7aeLjvF1VEzxvHzI9C2y8u/MkADtyR/M6e2yzvNjINruTZ5k8j4uuPB29abx95zo7rKLOPJr+WjxX/qC75BW4PCQUXDzRl2+8+9XlOWzKVb3m4wU9t0KWu5G/drx5y4A8sh/suW8fsjy+bO289iaWvCFZBbwRwy67tceOPL8gF7yvHVa8/IkPvdqWhDy6/Ww8DGA1vLr9bDwwOzI8XeiovKonxzmSBrY8ecsAvP5E5rzTuAO8wVTfuwdqJrwel768Cv/ROV/2xTwRw6681icEPIO3nj1Nv7y72aILvQdqJjsqkfk84yG/PKUxuLxdDlS8JVubvPXFsrtCTBC9DDqKvE9g7zyz+cC8x5GtOU9GyzyyTIc7q0HrO40QpzyoGSo892ZlvCl3VTw1McG8q0HrOrk2jzy6vZ081o3+uzsbyTqWT4s8OQ2sOw1Urrykqqk8uK8AvCq+FLwWJqg77M2Nu8DN0LxQ5328US49PP0QHjxKKpE7n2HUPM/cmLwScOg8A467vKeSG7o96RY90ZfvvJbioLuxWA69tVqkPAxgNT2ucJw7BuOXvEf7X7m0pnq5IBJGPKtuhjzfjJO6bthyvGiuGzw7bo+82XVwvLZOHbynkpu8FkzTvNXGID2qJ0e74tp/u5fWGTykPT+9TRIDvE+NiruU7ie8cyFIvPk0M7wStyc8v7MsPFSDmbtuKzm7ISzqOxP3djuWj1q8ePGrvNJxxLwBmkK8bDfAPItCWTw4xuw87/XOPAnLiTxC3yW8OPOHvPdAOjxQFBm8TaWYPPSrjjwmInk8YNCavJONxLzeBYW6eXi6vKyizrv6KKy74nSFPEHrLLz7AoE9R/vfPCw5nLx075U82TUhvMf+lzyWT4s8X/bFuta6GbxQpy680ZdvOVAUmbo0V+w8Cv/Ru++I5LxtUWQ8h9PYvDQXHbu3Qpa88/dkvFXwgzsxVdY70BBhPKZLXDmpM867GrvTvJHsETzYW8w6+Q4IvDoBpbopCus81QZwPHfXB71PjYq8dIIrPHkL0Lw/3Q88wtttvOgxcjti3rc8XQ7UvOgXTrt3ap27LyEOvfXFsrttERU7CITKOrNmKzzjO2M7"
}
]
}
You can use base64 encoded strings in your Vector Search queries only if your documents use base64 encoded strings, indexed with the vector_base64 field data type. You cannot search for and return vectors you indexed as arrays with the vector field data type by using a Search query with a base64 encoded string. |
Next Steps
If you do not get the search results you were expecting, you can change the JSON payload for your Search query.
You can also customize your Search index with additional features.
Either of the example queries on this page can also be used with the REST API to run a search.