Run a Vector Search with the Capella UI

  • Capella Operational
  • how-to
    +
    Run a Vector Search query from the Couchbase Capella UI to preview and test the search results from a Vector Search index.

    For more information about how the Search Service scores documents in search results, see Scoring for Search Queries.

    Prerequisites

    • You have the Search Service enabled on a node in your cluster. For more information about how to change Services on your cluster, see Modify a Paid Cluster.

    • You have created a Vector Search index.

      For more information about how to create a Vector Search index, see Create a Vector Search Index in Quick Mode.

      You can import a sample dataset to use with the procedure or examples on this page.

      Go to Data Tools  Import from your cluster and import the vector-sample sample data.

      For the best results, consider using the sample Vector Search index from Create a Vector Search Index in Quick Mode.

    • You have logged in to the Couchbase Capella UI.

    Procedure

    To run a Vector Search with the Capella UI:

    1. On the Operational Clusters page, select the cluster where you created your Search index.

    2. Go to Data Tools  Search.

    3. Next to your Vector Search index, click Search.

    4. In the Search field, enter a search query.

    5. Press Enter or click Search.

    6. . (Optional) To view a document and its source collection, click a document name in the search results list.

    Example: Running a Simple Vector Similarity Query

    For example, the following query searches for the top 2 vectors similar to the vector [ 0, 0, 128 ] in the colorvect_l2 field:

    {
        "fields": ["*"], 
        "query": { 
          "match_none": ""
        }, 
        "knn": [
          {
            "k": 2, 
            "field": "colorvect_l2", 
            "vector": [ 0, 0, 128 ]
          }
        ]
    }

    By using the special match_none query in the query field, the Search query is only a Vector Search query. It only returns the k number of similar vectors.

    The Search Service combines the Vector search results from a knn object with the traditional query object by using an OR function. If the same documents match the knn and query objects, the Search Service ranks those documents higher in search results.

    The document for the color navy should be the first result, followed by a similar color.

    Example: Running a Simple Hybrid Search Query

    The following hybrid Search query searches for the top vector similar to the vector [ 0, 0, 128 ] in the colorvect_l2 field. It also runs a Numeric Range Query on the brightness field to only return colors that have a brightness value between 70 and 80:

    {
        "fields": ["*"], 
        "query": { 
          "min": 70,
          "max": 80,
          "inclusive_min": false,
          "inclusive_max": true,
          "field": "brightness"
        }, 
        "knn": [
          {
            "k": 1, 
            "field": "colorvect_l2", 
            "vector": [ 0, 0, 128 ]
          }
        ]
    }

    The Search Service combines the Vector search results from a knn object with the traditional query object by using an OR function. If the same documents match the knn and query objects, the Search Service ranks those documents higher in search results.

    The document for the color navy should be the first result, followed by colors that are similar and match the brightness field query.

    Example: Running a Semantic Search Query with a Large Embedding Vector

    The following query searches for matches to a large embedding vector, generated by the OpenAI embedding model, text-embedding-ada-002-v2.

    You can find generated embedding vectors for each color’s description field in rgb.json.

    This query should return the document for the color navy, based on a generated embedding vector for:

    What is a classic, refined hue that exudes elegance and is often linked to power and stability?

    The following shows part of the sample Search query:

    {
        "fields": ["*"],
        "knn": [
          {
            "field": "embedding_vector_dot",
            "k": 3,
            "vector": [
              0.024032991379499435,
              -0.009131478145718575,
              0.013961897231638432,
              -0.024734394624829292,
              -0.020605377852916718,
              0.006739427801221609,
              -0.012539239600300789,
              0.0063192471861839294,
              0.000004374724539957242,
              -0.030252983793616295,
              -0.010944539681077003,
              -0.0012845275923609734,
              0.0059850881807506084,
              -0.006388725712895393,
              -0.016304319724440575,
              0.03046472743153572,
              0.029988301917910576,
              -0.013121536932885647,
              0.01815708354115486,
              -0.011096730828285217,
              -0.0423753522336483,
              -0.0023523480631411076,
              -0.00022332418302539736,
              -0.0024681459181010723,
              -0.02911485731601715,

    Due to the size of the embedding vector, only part of the full query is being displayed in the documentation.

    Click View on GitHub to view and copy the entire Vector Search query payload. Make sure you remove the lines for // tag::partial[] and // end::partial[].

    Example: Running a Semantic Search Query with a base64 Encoded String

    If your cluster is running Couchbase Server version 7.6.2 or later, you can use vectors encoded as base64 strings with Vector Search. For example, the following document describes the color navy, with base64 encoded strings in the embedding_vector_dot and colorvect_l2 fields instead of arrays:

    {
        "id": "#000080",
        "color": "navy",
        "brightness": 14.592,
        "colorvect_l2": "AACA",
        "wheel_pos": "other",
        "verbs": [
            "deep",
            "rich",
            "sophisticated"
        ],
        "description": "Navy is a deep, rich color that exudes sophistication. It is a dark shade of blue that is often associated with authority, stability, and elegance. Navy is a versatile color that can be both bold and understated, making it a popular choice in fashion and interior design. It is a timeless color that never goes out of style and adds a touch of sophistication to any look or space.",
        "embedding_model": "text-embedding-ada-002-v2",
        "embedding_vector_dot": "i2YKOzXJwrsL+RQ77hrZuyqurLwbCXk8dzvIvC/qkLyVlzy8d8yIvBNleLwZfMc7ngAMvHp+z7xf0Q29RLigPD/V3zwQpLi8UWDoPP09Rbxmv7i7RaIEPffyZ7yIIwO80jmJvPi3NrvUfJA79UChvOlKIDzBB6S8FsoAPKQpaLz2mcS6udLivLEJzTw8ObW7oWiovMEHJLxXnMw7XNgwuzdWdDwDVRQ7vdo4vBt1JDt6NKW8jfM7vG4ZDztzM3K8IdadOyAgyDxAZiA9pATTPE56Eznapey83tJXPCdGEDxFooS8mtMgPS8PpjyLsLS7ksN0u44CNbrVRPO7weKOPM173bufo9m8yaukvCdrpTyi5uC8CAC4PP7zmjx/cAk9EbOxPPL9mTyn2Jo8da4WPGz7HLxZBGk8g+eevICklzqkBNM7qOeTvDlA2LyEZVc7M2GmOxN4gDz5kiG873N8PJrToLxy2s675WdfPLa08DyllRM8bohOO3Jrj7yllZM81ouJPDBDtDxAQYs8DC2jvCuYEDySw/Q8J0YQvelvNTkV4Jy8RLigvJyqfLzbNq07G3WkPJEgp7yvfJu8b3IyPTvgkTw5QNi80ahIPEG/wzqhQxM8PbdtvO/fJ7zmdti8KJ+zvICklzxtCpY8v5+HvKOGGjyVcqc8JHLIO3YHOr0v6pC8NaQturPzMD0y0OU8AFw3PKgMqTwDn768ypWIPMvJFr3/J6k87ynSunuNSLx10ys7bmM5PJJ5SrzSgzO7R571u6pANzwEZI08ex4JPCWm1rmfDwW82t0JPSGxiDuEZdc8auwjPMvuq7woDvM8iVeRPJmfkrxeZWK7W+7MPI+A7boeAlY7GCMkPNTrT7unswU9pCloPMayRzy2j1u8DWExvGknVTzNe128A5++PFvuTLzjtRg867I8PAY76Tz/TD490oOzuv1iWrzSgzO7CX5wvJA2wzucqny7tN2UvGsgMjoOlb87AWswPeOQgzwTQOM74AbmO/YqBbyfo9k8IPuyvLxcgDzY8yW/0SqQvIRAQrpM/+68BPjhPC1v7Dw50Zg7ahG5PA08nDss8TM8lXKnvD4yEjx6fs+732OYvPcX/brd6PO51wnCOna9j7sekxY8j7gKPIMxybwOBH88WDyGvAPEU7szPJE8g+eePO2cILvG/PG7914TvJ+j2TrjkAO99xd9PCnTwTw8Xko8o9BEPQkPsbojiGS8U9sMPQGQxTuiwUs8uWMjOw4EfzyISBg7jT1mu+6rmTt38R081KGlOnycwbzcRaY7V8FhOlt/DT2M5EK8yaskPA5wKjxhqOk8y11rvLtNhzxRYGi8jamRvOxokjyxU/e76UogO7qXMbtW5va8MI1evEiIWT34tza9eg+QvKzN6Lx71/K8+RBavCY3Fzw59q26psmhvAN6qTyVTRK7JjcXPTKrUDzb7IK8p7OFPE8d4bs457S82t2JvMmGj7xYYRs9sb8iPPVltryw1T6845ADPd3D3rzsaJI8cMvVO6Lm4LpPrqG87XeLvKezBT3VRHM5Dt9pvB7dwLqszWi75OkmvO6rmTpteVW7YyOOPMO5arvNoHI7myxEu5mfEj2OArU75A68vIMxSTxKl1K8zgyevNCZTzuu61q7R1TLvE1GBT3nz3u8hXRQPIc5H7yoVlM8/C5MvBUFsjpRhX08SrznOi62ArwKaFS7cE0dvJ9+xLv71ai6hgWRPGHN/jwZDQg9w2/APPLYhLvcaju61rAeuwCBzDuhC/Y7ddMrvQZzhjzgBmY8TulSvGjOMbt1iQG8RJMLvSLAgb3J0Dm8K70lvXoPEDyUYy68mQ5SvIQbLbwxd0I9tRGjPIRl17t4lOu8iXymOkCLtTsvNDs8sb8iO/vVqDyvxkW8zjEzO4x1A7xGRdK8Q901vSsH0DzmLC68O+ARvbRMVDxjSKM82qXsO/jcy7v+zoW8mem8PM5WSL2E9he8tHHputcu17sUrA48CQ+xPBW7h7zIGuQ6hZnlPEZF0jyWXAs9Pnw8PeXTCrw6dOa62+yCPApDP7xmvzg60wFsuqCNvbwAEo27ddOrvGtq3Do9/oM8HamyPCM+ujz0isu79/LnO9I5CTzgchE8hPYXvKFDkzyFKiY8Zi74OaFDEzwYxnE7LzQ7vANVlLxgBRy7YahpPEI9/Dva3Qm8GkGWulyOhjvKup28IdadPMF2Y7xjIw481HwQO9aLCb2GBZG8Iz46PAHa77sPJgC9EMnNvEG/Qzz/J6k84AbmO+3myruNPea8RwqhPNqA1zxLXCG9RvsnPP8nKTtb7sw77XeLPFFgaDkna6W8HgJWPf7OBbs17tc8CmjUuvKR7rsqrqy8KA7zu7XsDTwf7Lm8wVFOvEpNqDrvc3y8BjvpPMDTFTtqx4485R01PH0a+jxKTai8WDwGPLOphjt/lR49ST6vuxdtzrtAizW7BGQNvRdtzrzHnCu7H8ckvHWJgTwaZis6hzkfvKhW07z8eHY8YpJNvAl+8DzkxJE8yxPBuyuYkLyNPWY8gntzPAG1WjrbNq28iG2tvLURozwKxQa9Zi74PBGOnDyBIlA8/rt9vHfxHbzG/HG8mQ5SvF3ClDzplMq7rkgNOxB/o7p+hiU9KOldvFz9xbyXta67pCloPO6rmTyXJG47/5ZoPGGo6TqNYnu8CVnbvIJ7c7zTSIK5zXtdvIPCiTxNa5o82gIfvNqA17wbv848mkJgO4yamDypiuG8tyAcvKLByzuOJ0o9FbsHvKFDk7xRmIW7LzQ7PJ4lobzKlQi9wK4APb8dwDyUY647w0qrPFkp/juxv6I8DFI4vJH7Ebnl+B88p/2vu0s3DLzFNI+7ruvavKLmYLyTCou8Qj18u9X6SLx1rpY7VA+bO21UwDwwHh88s84bPQN6qbykKWi72gIfPdEqkDrCYEe8dHoIvW9yMrtw8Gq8T4mMPH/fyLmTiEO8M2GmPBbvlbwVuwc6Tp8ovJpCYDwYody87eZKu4detDyCsxA7GTIdvSu9pbyfyG67HifrvHZRZLz/AhQ7Zi54OxihXLyw+tM8xX45PHKQJL0WFKs7d8wIvFAs2jusqFM6+NzLvCIKLL3xyQu8dxYzvLsV6rzCFp27ORtDO6sFBrz5bQy8Lw+mPJkO0jx24iS77GgSvB2EnbybLMS72gIfPMF2YzwRaQe8LW9suoW+erwU0SM8DAiOvGzWh7sW7xW8WZUpvFkE6Tz6xq88ABKNvIl8pjycvYS77GgSvIc5nzzvTuc7QvPRvJiQGTxG1pK8qyqbPJWXvLvlZ1+8n8juvP67/TxkfLG81R9evPSKSzzUxrq8PSOZuwfxPjygjb28OMIfPK9XhrwZDYi8uC+VvBCkuLwb5OM8VOqFu6yDvrznz3s734itvGAqMTxUDxs8zXtdvBpmqzx99WQ8MI1eOstd67yX/1g8fmGQPMF2YzgE+GG99NT1vB4n67zvTuc7HxFPPCZcrDtg4Ia8udLivBocAbx+hiW7gww0vPv6vbxw8Go8VA+bvKS6qLv43Eu8VkOpvCsH0Dx6D5C8nRaoOfeoPbyP3Z879pnEu8U0j7k/1d+8d/EdPPqhGj12UeQ8ffVku9O3wTwRszE8+7CTOqmK4Tb38ue7f5UeOojc7Ls3syY7YE9GO92eyTyAE1c81osJvMd3FjzYYmU8Hm4BPSBFXbz8U+E7MLLzvKezBb1ozjG8P/r0O7Hkt7u0cek8F21OvKzNaDt3FrM80JnPu1ZDKTyISBg8TunSPKOGmjtPrqE8GQ0IvFGYBTyHg8m7IGryvLRx6bxc/UW8KOndvDeOkTya06A8TnoTvIc5nzyo55M7LzS7PA8mALv8CTe7vf9NPIH9OrxhqOm76n6uuy7bl7wVuwe9kMcDvIJ7czyu61q8sNW+PFt/Db1M/268to9bOjdWdLvLONY8BhZUvLtNBz2inDa8CkO/u1t/DTwbv047uzr/OwQd97tXLQ091URzPHBNHTz9v4w8Wd/TOxB/I7zGske6PW3DvFVovjzq7W28ZKHGOzIIA71LN4w7Xxs4vQSuNzwPSxW8/hiwu7VbTTzfK/s7aSdVvNiH+jx2B7o1U9uMPFg8hjwjrfk7mq6Lur+fBz00lTS7wXZju/SvYLsJDzE8KlF6OzvgEbztC+A8r3wbPcZDiDyVl7y6yYYPPM+K1jxz6ce8trTwOhjGcTya+DU8mZ+SPOHLNLzpbzW8FbsHvc4MnrymE0y7YAUcPBxQj7zyIq+73i+KPPIiL7oDeik8nIXnvGYJ4zvFo0485WffO1nfU72AOGy8rhDwOtDj+Tv/ApS70ON5vNaLiTvqWZk8J7XPvD0jGT3LyRa98zEoPB/sOb3/TD48X9GNO9BPJb1KTag8ZHyxuydGEL09t+27jWL7O/zkIbzfPoO7MVKtOyOt+bjXmgK71rCevMU0D7yzqQa9bojOPLyBlbx1dvk7vumxPNxqu7yFTzu8X/YivasFhrzoFhK84fDJvOYHGb2wi5S8MVKtPOyNpzxs1oe8/s4FOz6h0Tson7O8uC+VPIeDSTyeb0u8MGhJPNfkrDwtb+w8mmf1O4cUCrz+u326y11rvEpyPbxcItu7yD95PBsJ+Tui5uA8t/sGPUee9bwXSLm8yBpkPOrI2LsqUXq8ST4vu0qX0jwYoVw8XCJbPImhOzv3zdI8Fl7VvF5lYjv6oZq8o9BEPDn2LTsOcCq8ydC5O8ayR7xChBK9ZUGAOR/suTwbCXk7iG0tu6xeqTuzqQa8CX7wt6ezBbwO3+k8QhhnPH315Dv0iss8NzFfvUWihLwAEg29GCMkOw2Gxrw6Krw88ckLvDOGOzzx7qC8nkq2vDpPUbpytbm8qDE+PFirxTw0lTQ8qyobuoB/Aj1bf408/FPhO94virwBkMW8nRaoukFQhLy8pio8pyJFvMukgbsAXDe9A3qpPJqui7woeh68QwLLOieQurykTn28SOULPNyP0DvxyQu8pZUTPCpkgry8XAC9JSievGVmlbxmLvg6RwqhvKjnEzzu0K67B6eUO8xHz7w2/VA8QGYgvJZcC7ykuqg8V3c3PrmIODxP+Ms8uHm/PNX6SLzLyRY8osHLPG6tYzvuhoQ8j7gKPHuyXTyjqy892D1QvFmVqTt71/I8DRcHvZmfEr2ffsS81URzuvC6ErwKxQY4tkWxvIhtrbsGFtS7LSVCPHp+TzyFmeW5F23OPL9C1Tsw+Yk8a2pcvLk+Dr0874o7gKQXuw9LlbtpTOq7cabAO5yFZ7zYYmU8weIOPKdH2jt71/K7udJiOkS4IDv0r+C7gzHJPIdeNLyE9pe75ULKO0qX0jsU0aO81HwQvLcgHD1CPfw8f7qzu3+Vnjz38mc8798nPFQPGz2NYvs8cTeBvLIYxjxXd7e7Tx3hPNOSLDxFEUQ8WnAUPCzMHr0qrqy68RO2OmEUFTx6Wbo6LtuXvAY76Tsy9fo6ESLxvPSKSzyzzps8ZHwxuyIvwTwyq9A7mq4LvKsqm7yI3Oy6OawDPJLD9Lw0ukm8NzFfvE7EvTt4lGs5tVvNO2WLKrvQvuS7H6IPPHhKQTzBLLk8c5+dPGhx/ztIY0S8ruvaO44CtbxuYzk8T0J2PGrHDj1+q7o7k4jDuxjGcTyIIwO85nbYO8ecKzuM5MK7osFLO4htLTyfWa+83yv7u2BPRjq9kI68J0YQvY2pkTyUPpm7pE59vKakjLxPiYy8w0qru9B0Ojz668S88ckLvdknNDwQfyM7upcxvVt/jTzYYuU7LMyePHfMCL1ZKf67Z3WOPJ07PTwJNMa7/b8MO1ecTLzZJzQ75dMKvW0vqzrd6HM8lAZ8PESTC7yJfKa86SULu8O5arxzDl28jRhRvCUonrxeinc74aYfvN3o8zq17I28xtdcvAi2DbmcvQQ7n6NZu5ARLr3HnKs8unIcPf9MPrskTTO8Oiq8OpnEJ74o6V09tewNPEpNKDziSe27caZAPCsHUDxTSsw7bVTAvIl8pruz87A7r8bFOwseqrwZMh28rPJ9uwl+cLttL6s8qYrhO06fqDx2LM88p/0vPUnhfLz/ApQ49NR1O1DiL7yOArW6foalu/eDqDysOZS8ZUGAutyPUDxZur67uxVqPFirRTxQvZq7QGYgPJKeX7t6NKU88zEouyBq8jys8v26sS5iPM/2gTzQdDo8CQ+xvCIvwTvLXWs8ouZgPPMMkzt6Wbq8I4jkOn315LzzVj06z4pWu3kAFz2II4M8U9uMPBCkuLtAQYs76n6uvCJU1rzzDJO8o6svvMsTwTwiVNY63cNevLvwVLzfPgM8NEuKvNC+ZLufo1m8F0i5OTRLCrzBdmM7/0w+PClVibxwKIi7Ne5XPEIYZzseJ+s7+7ATvJck7jtHLza7BZgbux4n6ztq7KM8M4a7vPKRbrxWQ6m8GTKdut+ILTxYPAa915oCu2ipHLuvVwa8F0i5u8ukgTwrmJA7zlZIvAOfPjkF4sU8whadumVBALyXta635Yx0PKLmYDxwy9U7T0L2O+YsLj0i5RY8MLLzvOGmnztgKrE8CsUGPEs3jLyfyG46SeH8O/VltrwItg07JabWu8IWHT1BUIS8JHJIvK9XhjxFEcQ8NaStvK/Gxb0xd8K7AFy3PNe/FztLNww8s5Z+PKtPMLyWgSA8iVeRPMrfsjxZ39O4LrYCvAWYGzy+M1y85lFDPLZqRrvq7W07GhyBu7PzsLzQvuQ8Sk0ou8qViLt+q7q8s6mGvPdek7tlZhU7/Hj2vFkpfjySnt88kp7fPFpwlDyYkBm6wmBHOp+j2bxlZhW9jamRuw5wKjxJ9IS71ouJPGaao7xI5Qu7WQTpO+13izv8eHa9+Lc2O+LarTslKJ68q08wPUnhfLwJDzE8LKcJvLaP2zziJNi6grOQvEF1GT0Itg28L1nQPLmIOLqpiuG82Bi7u1z9RbzGaJ08JctrvKbJoTwly+u8zXtdu8td67zhgQq8urxGPBEi8bwXSLm8K70lPPTUdbx9LQI9Lw8mvRxQDzwb5OO8OMKfPAWYmzxz6ce63i8Ku2bkzTr8Lsy69iqFvDWkrbtjxls9y6SBuxYUK7pBUAQ8Y8bbvLsVarvD3v88zjEzPBt1JL2NYvs4OfYtPEnhfDy2j1u8uWOjux4na7yB/Tq86W81vN4vCr3Kup083z4DvFwi27w3jpE8Ef1bvN9jGLy/HcC721vCO9iH+jtw8Gq8VKPvOxgjpLzcaju8JHJIvDmsAzww+Yk8jORCvANVFLzBByQ7tAIqu8QllruJVxE9Xop3u5LD9LzGjTI7BjvpueGmHzxwKAi809xWvLFT9zsF4sU7ki8gPJ5vSz1GIL28/Am3vGipHLwF4sU8GhwBPCRNs7tNaxq8VKPvvBzOxzvuGlm8RiC9vH6rOrwqZAK9E0BjPPzkoTuFmeW7K5gQPTBoSTzwupK6MGjJvPKR7jv6xi+93Z5JPPwuTDz7+j08jHWDOm7SeDzl04q87DD1PNbVM7yD5548dztIPD/69LyaZ/U8W8k3PMCbeLz6fAU8+TXvum5juTy+WHE7foYlPEpyvbzuqxk8f5WevNxqu7w9Ixk9oUMTu+yNJzxIiNm8BjvpPE1GBTxHnvU7yD95vJ3xkjtu0ng8NHAfPOYsLrzDb0A69RsMva2SNzy7FWq8O+CRvBocgbsVuwc7CkO/vHuyXT3VRPM77ynSO4gjg7vKlQi9N1Z0vBYUq7zBLDm8bXnVuiBqcjzx7iA8SOULPBUFMrxCGOe8icZQPEiI2byM5EK7LrYCvXMz8rympAy8tEzUPMayxzucqvw81rAePa7r2rngcpE7VKNvPJXhZjwgRd28gMksOzRLCj0ntU88gzHJvMtda7uEZdc8cVyWvMayxznlHbU84OHQPPcX/TooxEg9IbGIO36GJb0mXKw734itOzb9UDwwHh88OMKfu5JUNTtKl1I8eQAXuwrFBrzt5ko8wK4AvE56E70PJgC7gBPXvMEHJD3+GLC8ZUGAvPSvYDyb4pm7KlF6PN6twjsR/Vu79NR1vAx3zTxXLY27GQ2IvJxg0rzt5so8xTSPvLRMVL0ganK8G5o5vELzUbupr/Y6cPBqvDSVtLuyGMY8FSpHPI2pET3LpIG8L+qQvLnS4jy6l7G60SqQvEI9/LsPS5W8"
    },

    The following query uses a base64 encoded string for the same query as Running a Semantic Search Query with a Large Embedding Vector to return the document for navy:

    {
        "fields": ["*"],
        "knn": [
          {
            "field": "embedding_vector_dot",
            "k": 3,
            "vector_base64": "1uDEPDKcFbxxwGQ8yZ/KvJzMqLxr1tw7YnFNvLARzzuZypI2G9X3vLpQM7yYXai6jx7EO4RY0bujkIW8KpH5PAeq9Ty3+1a8Kr6UPBDPNbzHkS292ikauyEsarmewCG7SILuvOSCorzv9c48ND3IvEiC7jqnP1W8+iisPCxfx7tKauC8Hx7NvLIFSLuQZQM7N6zIu+xgozyjY2o6s2arO5fWmTt6JfQ71QbwO+J0hbwbr8y3fec6Oxdm9zvVWba7XGEau9FXILv7QtA8WIUvPdqWhLzGSu687ecxu71SyTsJeEO84MziPERACbx55aQ6pKqpOu+I5LzZdfC8RuG7t7/ze7wqvhS8+6+6vNR/4Tz5NLM5JVubPHtsMzzl74w892blOyZPlDynP9U8ArTmOlHBUrwpd9U60/hSPDjGbLrK5ok7zQ5Luw1UrrzS3i48/nGBPBeTkrs9VoG8eBdXukV0UbrS3q67FBiLvPP3ZDyIWmc8CcuJPEARWLy0QIA8P/ezPEq9pjxiBOM7ZOzUO7xe0DxG4bs7o2PqvM17tbvj+5O8NTFBusSpO7sPtRG764ZOPCbiKTpxmjm97Q3dPFkMvjw/3Y+9k41EPKCok7y/IJc88kqrvJ9hVDy2juy8nebMuxbf6DwAEzQ9fec6vL2ljzxgPQW8v42Bu8uHvLyDJAm9pOp4uzf/jjwW32g73MpMvOuGTjzHawI80t6uO/eTgLx9VKU80ZdvPBHpWbsI8bQ8kKXSPAtGEbyuA7I79KuOvDMjJDxtvs4712fTO+M7YzuMyee5fA3mPCXIBbw/9zM9lKdoPJF/J7zM9KY8HirUuzJJTzxuK7m8iFrnO19JDLzNDsu737I+PIMkiTvea388N/+OPCw5HDxb2gs8nDmTO8tAfTzoMfK8hiafO9xdYrwQqYo8PGKIPDxiCD1KKhE9lo/aOcA6u7pG4Tu7QNEIvBdmdzxI79g8x9F8vBMkkjuWdTY8XPQvPVzOhLwb1Xc6InMpulOPIDs4hp08uFw6vKPQ1LwL2Sa/qpQxvLjJpLymS1y84Ka3PDqUujzGJMM8QessPLhcurzjjqm8nMwou8oALjwYh4s770iVuw5u0ryinIy8mv7aO1hfhLsvYd073mv/ur5sbTzRl+881cYgvXSoVrxiBGM8bthyPGuwsbqPiy67ABM0vOEtRjvdEYy8s4zWPOzzOLzWjf47f/VXPbpQs7vz9+S8SILuPGgbhrv6u0E9zSjvO2+yxztIrwk8vDilvF17vrrT0qc8Li2VO/5E5rx1nM88Dm5SvDkz1zzimrC77tuqOy7aTjw9fCw8IewavC3m1Tz9fYi8ZieNvPFWsjyBVjs8tNOVPHATq7u0pnq8C9kmvI6XNT30fvO8hKsXvEBkHrz3QDq8vpmIvDULljw/HV+8Et3Su6FVTTgHqnW6pZ4iPCtFozz9fYi4q0FrPJ4tDLwQPKC8/X0IvPR+8zvohLg8oHv4uXa287za/P68p/+FPDrngDxV8AM9tKZ6PLjvT7vr2ZS8OXqWvFOPoDxtUWS84MxivK/dhrwdvWm88Hzdu4O3Hr1Wkba8XGEaPOIHGzyIhwI8c/ucOyCl2zxIrwk8JNSMvE14fTxApG27XDR/vMCnJTw8iDM88TAHvVw0fzzCCIk7wDq7uzrnAL31xbI8ZXNjvL2/s7svYV264/uTO5aPWjwecRO8uv3su9HEijw7bg+7lo/aPFK1yzwNVC48vaUPPCuyDbxdez68MDuyvNO4A73Z4tq6GXuEvCqRebs/Hd+7EM81vLvXwTulMTi8A447vT8d37z8Nsm6kb/2vO7bqrsDjru8t/tWvCxfx7yx6yM9A447PIZMSjp5nuW8EDwgvOjxIjo5oEE8YH3UOzEvqzzoF868qxtAPIqVH7xSCBK9k41EvNJLGT2quty8TtngvHpSDzwrRSM8kb/2O8/cmDw9D0I8VFZ+PN5rf7w7rt68XDT/u/Hpx7yMNlI8XpViPMIICb1hxBO8rMh5PdP4UjrCmx48t2jBPB4q1DsRMJm7rpbHO7bhsjmB6VC7nAz4O/4qwruk6ng7ND3IO6c/1TqUgT085iNVPKTqeDyLr8O8KPBGPInhdTuAz6w8JZvqu8YkQzzJn0q8+pUWPHheFj2cDHg8UYGDvCq+lLs4xuy8jx7EPDz1HTzL2gI78/fkPOzNDbx4F9e7mZ33PN2+xTy1WqQ8UcHSO5md9zt314e75QmxPNmii7zszY28QH5CvFiFL7xnQbE8fXpQvDYlOjqXaa+8HkR4u2dBsTx1nM+8kuCKPJhdqLviBxu8sX45PPmhHbxuRV27+TQzPaNjajv5Dog8LyEOPEdoyrwWuT28RuE7un1UJTy8XtA6kKVSvM+vfTyVCMw7KpH5PKQXlDu4yaQ5Yt43PAqS5zy+LJ68s4xWvGPSsLz/sVA8sVgOubvXQbv4Gg+7+O3zO7XHjrwE7x688koru59HsDtu2PK8s4xWPCKzeDth6j67YGMwOhPRyzxu2HI71icEvC2mBr0ldb88+pUWPf/4j7yrQeu8v40BvQbjFzzzZM+7UggSPStFIzyQOGg82XXwuyXIBbwwOzK8MBWHvNdBqDyiScY7OQ0sPNqWhDyRf6c8JuKpvJ4tjLw2JTo8eITBPE4spzyIWuc54rTUO2pp8jtNpRi8SQl9u2IEY7sDaJC7YgRju8P8AT2LAoo7h60tvH6U9LvAOjs9AMx0vHf9Mjxh6r68FFjavKLcW7tvjJw9x6vRu0Er/LsT0Us8rPUUvOvZFLwZDhq9bVHku6z1lDwH/bs8e9mdPJvYL7gKUpi8TMtDPIw20jt+wY+7Y/hbPAQVyrxZeai8BuOXvDXeertnQbE6g9HCudGXbzyinIy6pZ6iPIVy9TyhVU084tp/PFGBg7zhgAw7u7GWPHdqnbxeAk08/kTmu+/1zrvRV6C80h5+PEuxHzz5oZ28DgHoPG0RFTxkPxs6SMmtuRvVdzy/IBe8UBSZO8UKnzuOKku7Kr4UvA4BaDue2sW8/b1XvCQUXDzIMuA7JO6wPF6VYjmwN3q7m4VpOjULlrxX/qC8D7URvI+x2boG45e8to5svDMjJL1lWb87r90GvYHpULxI71g809InPMdrgrwvIQ69Px1fPPsCAT2n0mo8gQN1O6tBa7zC2+07vb8zvAEtWDx6JXS8n/RpOy2mhrytKV07ZTOUvDtujzua/lq5U4+gvGniYzyhwjc8N5KkvOGADD0BgJ68AuEBvU8gILxvjBy8uXZeOxSroLx0gqu7Yeq+OwvZprwT0Uu8NiW6vC2mBjyNECe81k0vvM5vLjy+bO28WBhFPDHo6ztmuiK9Mejru/19CDxRwdI6TaWYu4ZMyrxYxf48lIG9u/+x0LyjY2o8wggJvfPRuTv/+I88IrP4vMttmDzWupk7Gxy3uxdm97srRSM85BU4vAWcWDyfIQW99Z+HvMNi/Lz06927KmtOvCGZVLwtpoa8vyAXvJP6LjxaALc8aikjvLHro7wgEsa8EKkKvdJxRDxrHZw8HnGTvD0PwjzVc9q7y0B9vEJyO7zPidI7uTaPOwxgtbqjY2o7Eko9O0VarTub2C+8B6p1Oy4A+jyS4Ao9st+cOzKclbvApyU8AYCeu3a287vBLrS6Jk+UPFMitjvI8pA8IrP4Oo6XtTw2eAA8Di4DPQUJwznrhs67veXevODMYr2i3Nu76BdOO2ZNODtEE248hiYfvP/4D7uVW5I8X4lbvIetrbwuLRU65QmxPOqSVTw+Azs9HnETvUzxbjwGUAK8Jk+UvB5xk7vtDV2862wqOyZPlLkEgrQ81ieEu4B8Zjwlm2o8oHv4O8om2TvszQ089D4kPJ/0abwXrba8nAz4vKXEzbwW32i8hOtmPMsaUjtWJMy8hcW7PDEvq7x0gqs6biu5PDK2ObxCcrs8PPUdugMhUT2E62a7q26GvPEwBzz1n4c7+igsvMyh4Ltxmrk8STaYO9k1obtXq9q7jDbSPOFT8TvviOS8gTAQvJpRITxQzVk8u7EWPD18rLwZewQ8T7M1vHiEwTzWupk7bIoGuha5PTzzt5W8bx+yOgq/Aj3K5gm8RceXPNP4UrwDO/W8dVyAvPtCULwszLG8ETCZu+A5zbsuLRU9w2J8Omb68TomInk85pC/uiuyjbpuRV28IKXbO16V4jyge/i76xlkO6XETTvTuAO8knOgPHOOsrxmuiI7KXfVu3iEQbxlc2O8OIadPHol9LspCmu8X0mMPMK1QrtgPQW60VcgvZSn6LsYGiE8JXU/vOqS1byulse8WiZiurLfHDsvIQ68ClIYvfeTgLzT0ic8OucAvduwqDxNvzw42x2TPBHDrry7sRY862wqujIJgLzoF848e2wzPDf/Dr1Fmny8zPSmO+eqYztZDL48lxZpvBettry3aME8jImYPOFT8ToYhwu84rRUO+qSVbxXaws7/pcsPKl6Db1w+YY7r92GvNdn07zJeR+8IrP4vNAQ4btd6Ci8e0YIPcLb7Tv231a8Jk8UPHCmwLtuKzm8zeifPHgXV7smInk5k/ouvMIIiTz8iQ89n/RpPDqUurw/ism8a0PHvDeSpLu4yaS8TPFuPApSGDtWt+E8MehrO/k0M70HqnW8T2BvPMSpu7whLOq8mv7aO6+wazxfSQw8v0bCPAiEyjp3ap08ckdzufvV5TqsyHm8O67ePI1Q9ryPiy69ZcapOoCpAby8OKW8d2odvJ8hhTx+lHS7xkruOdFXoDxbrXC86xnkOkSAWLqyH+w8mcoSPQLhgTzJeR87GU7pvBscNzte3KG70NARPMrmCb2BMJA8ecsAPE2lGDuIh4K8EnDou5uF6Tvl7wy8cYAVPC9HuTzApyU8jirLvPQ+pDyiSUY8YKP/On3nOrzTZb28qBkqPNdBqLyi3Fs8MVXWvF0O1DwPtRG9g2TYO3iEQbxvjJy8UyI2vP4qQrw8NW28C2y8PNjINjxXq1q8n/RpPBQYC72f9Gm8K9g4vBEwmTsMYDW8gVa7vKUxuDouLRW8JQhVvG1RZLy7sRY7TiynvHUJujyHrS08R/tfPiHsmjxApG28k/ouPatBazy+LJ471QbwPLaO7Dl6Ug+8+O3zPPZMQTxgPYU8WpPMvFK1SzxFx5c6xcNfvBRYWrynkhu8T2DvvNfUvbzL2gI8nyGFvHA51rvAOru8amnyPKWeojwS3VI8XxxxuyNnIrrcNzc8T0bLvCONzTqpM048gcOlO1f+oLwWJqi7yiZZvJMgWrz2uSs8DVSuPBP39jpX/qA8RVqtu1w0/ztmuqI8bRGVPCzMsbxM8e67LVNAPFCnrjtKauC8qpQxPCxfRzw8Ygg9R0Ifu57aRTwIXp88C2w8u5l3zLtKamC8RuG7vKZL3DxgY7A6gDyXPDesSDwuAPo8O67evCq+FL0xVda71QbwO1sa2zx5ywA7SO9YvCWbarrrhk47u4R7vMttmDxFNII8KpF5PLFYjjwJy4m84tp/Oy9h3bvmkL88MM7HO9B9y7w7rl687GAjvI1QdjrkqE08kyBaPMjyEDys9RS8r7DrO3VcgDyEGAI6Cr+CPLIf7DvAOru83VFbvDXeerzR6jU8AMz0PDeSJD0pCuu7ygAuPL9GQrxz+xy8qBmqO4PRwrzq/7+6Ft9ovB4EqbvdpKG8OU17vLSAzzmgqBO7CQvZvGmiFDzGSu66amnyuoNk2LybRRo6Y7iMPO0NXTzMoWC8pOr4vP19iDyQEj06rgMyvfB8XTzp5Ru8vVLJPCkKa7xn1Ea8OIadO4kOkTwFnFi89t/WOwYjZ7nwfF28j4suvLzLujylnqI7Li0VPDxiCL2C3cm8F0BMvM/2vLx48au8BiPnusJI2LxWdxK80kuZvEfVNDsZoa86vDglvHTvFTyVCEw8HkT4PMttmLySc6A8wtttPXnLgLz3QLq75Qmxu3xgLL7n/Sk9Vz5wPP8eu7w+cKW7X/ZFO0vXyjtTjyC8hZ+QvMXDXzwdEDA8XQ7UO11VE73Zogu8m9gvvPbfVjsAzPS7Yt63Ow4BaDweRPg6YVepPEjv2LwNVK48l2kvuuP7k7vOlVm8qFl5vOLafzzjIT+7KcobvDkzV7x95zq712fTOA+IdjwUPra7GgITPLoqiLwh7Jq84DlNvO/1zjv0fnM8zm8uPDK2uTwrso07InMpvC3AKj3t5zE9lxbpO2P42zxZeai8GpWou58hBbuk6ng869kUu92+RTxiBOM82rwvPA4B6DxTj6A7ZvpxvECk7bonaTi8iFrnOkV00TuBw6U82eLaOzxiCDz2JpY7bDdAPCLgEzwpCms8+6+6vJClUjzmI1W8HX2aPPjt8zvkFTi8sVgOPCkKa7zZdXC6VQqovNniWjwvtKO8vb+zuwWcWLvSccQ8u4R7vA16WTuqlLG7zXu1uz/djzzYrhK9cnSOvKkzzrwYx9q7wrXCuwYjZ7uoGao89cUyOna2c7xGTqY8pD0/vCF/sDp2tnO7/KMzPVttoTxaJmK8remNPP6XLD3dEQw9RO3CvJ4tDD2oGSo9/DbJOkWa/LyTjUQ8LDkcPKmguLxVCig5sViOOzULFj3ycFa76IS4u/8eu7pQ5/27e2yzvC3m1b15ywA89KsOvNw3N7y6UDM8u0SsPE9Gy7uFcnW8ISxqO6ZL3DwUPra7pQuNvIjHUbrxw5y8st+cPOr/P7qUFFM8/x47vEkJfbz7QlA8V/4gu+J0hbwO2zy8pQuNvBYMhDyQOGi8rx3WvO+I5DqXFuk710EoOwiESjyjkIW8NISHu4O3nryebdu8U/yKvC2mhrxoG4a7meS2OyLgk7xak8w709KnPJF/pzz9fQi9Z0GxPJmdd7vLbZg7VKlEO7LfnDzq/786to5svNjINrzGd4m8ni2MvE14fTxDjF+795OAPIetrTvQY6e80t4uPJnkNrsvIY489D6kvJ7axTyjY+q74nQFvKsbwDsm4qm7s4zWPPdAOr2siCq96Z7cuf4El7yVCMw8InMpvUnj0TvwD/O8dQk6u5BlgzzBVN+72TUhvL+zLLxfiVs7aeLjvF1VEzxvHzI9C2y8u/MkADtyR/M6e2yzvNjINruTZ5k8j4uuPB29abx95zo7rKLOPJr+WjxX/qC75BW4PCQUXDzRl2+8+9XlOWzKVb3m4wU9t0KWu5G/drx5y4A8sh/suW8fsjy+bO289iaWvCFZBbwRwy67tceOPL8gF7yvHVa8/IkPvdqWhDy6/Ww8DGA1vLr9bDwwOzI8XeiovKonxzmSBrY8ecsAvP5E5rzTuAO8wVTfuwdqJrwel768Cv/ROV/2xTwRw6681icEPIO3nj1Nv7y72aILvQdqJjsqkfk84yG/PKUxuLxdDlS8JVubvPXFsrtCTBC9DDqKvE9g7zyz+cC8x5GtOU9GyzyyTIc7q0HrO40QpzyoGSo892ZlvCl3VTw1McG8q0HrOrk2jzy6vZ081o3+uzsbyTqWT4s8OQ2sOw1Urrykqqk8uK8AvCq+FLwWJqg77M2Nu8DN0LxQ5328US49PP0QHjxKKpE7n2HUPM/cmLwScOg8A467vKeSG7o96RY90ZfvvJbioLuxWA69tVqkPAxgNT2ucJw7BuOXvEf7X7m0pnq5IBJGPKtuhjzfjJO6bthyvGiuGzw7bo+82XVwvLZOHbynkpu8FkzTvNXGID2qJ0e74tp/u5fWGTykPT+9TRIDvE+NiruU7ie8cyFIvPk0M7wStyc8v7MsPFSDmbtuKzm7ISzqOxP3djuWj1q8ePGrvNJxxLwBmkK8bDfAPItCWTw4xuw87/XOPAnLiTxC3yW8OPOHvPdAOjxQFBm8TaWYPPSrjjwmInk8YNCavJONxLzeBYW6eXi6vKyizrv6KKy74nSFPEHrLLz7AoE9R/vfPCw5nLx075U82TUhvMf+lzyWT4s8X/bFuta6GbxQpy680ZdvOVAUmbo0V+w8Cv/Ru++I5LxtUWQ8h9PYvDQXHbu3Qpa88/dkvFXwgzsxVdY70BBhPKZLXDmpM867GrvTvJHsETzYW8w6+Q4IvDoBpbopCus81QZwPHfXB71PjYq8dIIrPHkL0Lw/3Q88wtttvOgxcjti3rc8XQ7UvOgXTrt3ap27LyEOvfXFsrttERU7CITKOrNmKzzjO2M7"
          }
        ]
    }
    You can only use base64 encoded strings in your Vector Search queries if your documents use base64 encoded strings, indexed with the vector_base64 field data type. You cannot search for and return vectors you indexed as arrays with the vector field data type by using a Search query with a base64 encoded string.

    Next Steps

    If you do not get the search results you were expecting, you can change the JSON payload for your Search query.